
 
 

 

 

Pic Programming Guide 

 

 

 

 

 
Oct 2013 

Doc Rev 0.01 

  



 

Renard Plus 
www.renard-plus.com 
 

Page 2 of 19 
 

PIC Programming Guide 

*Other brands and names may be claimed by others 

Contents 
 Introduction to Renard Pic Programming .................................................................................... 3 1.

 What do I need? ........................................................................................................................... 4 2.

2.1. What is HEX ......................................................................................................................... 4 

2.2. Firmware Options .................................................................................................................. 5 

2.2.1. Start Address .................................................................................................................. 5 

2.2.2. Baud Rate ....................................................................................................................... 5 

2.2.3. PWM vs non-PWM........................................................................................................ 6 

2.2.4. Zero Cross ...................................................................................................................... 6 

2.2.5. Renard vs Renard DMX? ............................................................................................... 6 

 Renard Protocol ...................................................................................................... 6 2.2.5.1.

 DMX on Renard ..................................................................................................... 7 2.2.5.2.

 Renard vs DMX Summary ..................................................................................... 7 2.2.5.3.

2.3. Picking a Pic Programmer (HW/SW) ................................................................................... 7 

2.3.1. PICKit ............................................................................................................................ 7 

 PICKit 2 vs 3 .......................................................................................................... 8 2.3.1.1.

2.3.2. PICKit software ............................................................................................................. 8 

 PICKit 3 Programming Example ............................................................................ 9 2.3.2.1.

 PICKit 2 Programming Example .......................................................................... 12 2.3.2.2.

2.3.3. Proprietary.................................................................................................................... 13 

2.4. ZIF Sockets ......................................................................................................................... 13 

2.5. MPLab ................................................................................................................................. 14 

2.5.1. Installing MPLabs ........................................................................................................ 14 

2.5.2. HEX handling with MPLabs ........................................................................................ 15 

2.5.3. Source handling with MPLabs ..................................................................................... 18 

 Rebuilding and re-compiling Renard-Plus Projects ............................................. 18 2.5.3.1.

 Notes .......................................................................................................................................... 19 3.

 

  Renard-Plus, Salem, Oregon 97302 

© 2011-2013 Renard Plus.  All rights reserved. 

Published 2013 

Printed in United States 

 

Renard-Plus (“Developer”) has made every effort to ensure the accuracy of this document.  Developer makes no warranties with respect to this 

documentation and disclaims any implied warranties of merchantability and fitness for a particular purpose.  The information in this document is subject to 

change without notice.  Developer assumes no responsibility for any errors that may appear in this document.   
 

The information contained herein is the exclusive and confidential property of Renard Plus, except as otherwise indicated.  
 

We wish to also thank the DIY lighting community for the inspiration it has given us in the development of this product. 
 

Trademarks  the Renard Plus logo are trademarks of Renard Plus. 

All other trademarks acknowledged. 



 

Renard Plus 
www.renard-plus.com 
 

Page 3 of 19 
 

PIC Programming Guide 

*Other brands and names may be claimed by others 

 Introduction to Renard Pic Programming 1.

 

You are likely reading this because you just finished building your first of many 

Renard light controllers. You realized that beyond the PCB, parts, soldering, 

casing, and wiring of the hardware, there is something called “Programming” that 

is needed. You might have also realized it is all a bit confusing and you need some 

guidance.  Congratulations, you have opted to research the process and try to learn 

about it instead of just getting frustrated and getting mad at the developers. 

Hopefully, you have come to the right place and we can help educate, guide, and 

generally support you in your efforts.  Before we get into the software, bit twiddling, setting Vpp, 

flashing, erasing, etc. we need a little background. 

 

Renard is a lighting controller concept developed by Phil Short.  He developed a set of 

hardware and firmware (the software) to have a microcontroller (originally the “PIC” 

16F688 available from MicroChip*) respond to a computer generated serial 

command/data stream he defined as “Renard Protocol”.   To teach the PIC how to read 

and respond appropriately to “Renard” he developed the original Renard PIC source code. This, 

with a tool-chain/IDE known as MPLab (free from MicroChip), can be compiled into a binary 

image (HEX file) that is then programmed into the PIC.  If you have a “canned” (pre-configured) 

HEX file, the process to program it is fairly straight forward. However, if you need to customize the 

code in any way, then things get a bit more complex as we will try to explain.   

 

Another thing to keep in mind is that you need to obtain the proper code (either source or HEX 

files) for the appropriate hardware.  Since the time Mr. Short developed Renard, there have been 

many innovators like Mac, Dean, Brian, etc. who have created designs and enhanced Renard to fill 

out the designs available to address user’s desired capabilities.  The Renard-Plus line, including the 

“Simple” series and “Plus” series of boards is a great example of this.  These controllers have 

adapted new features, or used different versions of the PIC microcontroller than the original 16F688 

part Mr. Short originally used.  That means different code is necessary to run Renard on those 

boards.  If you have an SS16, you need the code indicated for the SS16, if you have an RP32, you 

need the RP32 code (either source or canned HEX) FOR the RP32, etc. Some code covers a number 

of different designs.  For the Renard Plus controllers, obtaining the proper code is easy because the 

code, (source and canned HEX), is available on the appropriate product page on the www.renard-

plus.com website.  There are also other “flavors” of Renard code, such as the Renard DMX 

available for some boards that allows a Renard board to learn a different communications protocol 

(see Wikipedia on DMX).       

 

We will try to address all of this in this document and try to make the options a little less confusing.   

 

 

  



 

Renard Plus 
www.renard-plus.com 
 

Page 4 of 19 
 

PIC Programming Guide 

*Other brands and names may be claimed by others 

 

 What do I need? 2.

 

That is a good question, but to answer it we need to understand a few more details before we can 

answer.  What you need depends on the board you are using and what you want to do with the code. 

For example, if your requirements match an existing HEX file configured the way you need, and 

you have a Renard-Plus design, the list of requirements to be able to program is much shorter. 

Other situations can be more complicated.   For our examples, we will mostly talk about the Renard 

Plus boards as we know them best.  The general information applies to programming any of the 

currently known Renard controllers so if you are an SS, Renbus,  Headblinker,  or any of the other 

Renard variants, this information should help you also.   

 

What I am doing List of needs From where 

Have a precompiled HEX for my 

board that matches my needs. 

The hex file 

 

The web (e.g. renard-

plus.com). email, a 

WIKI, where ever. 

PIC Programmer
1
 (see description) 

Programmer S/W e.g. 

PICKit  

Microchip, or Pic 

Programmer vendor 

I have source because my use is not 

typical. 

Renard Source 

(appropriate to board) 

The web (e.g. renard-

plus.com) 

MPLabs MicroChip website 

Some programming 

experience 

Various places 

including MicroChip 

website. 

PIC Programmer
1
 (see description) 

Programmer S/W e.g. 

MPLabs 

Microchip, or Pic 

Programmer vendor 

 
1
NOTE: If you have a board that does NOT support on-board programming through an ICSP 

connector, then you likely will additionally need a ZIF socket if your programmer does not include 

one – see the ZIF Sockets section for more details.  

 

2.1. What is HEX 
HEX is a file format for a firmware data developed by Intel for handling binary data without the 

difficulties associated with the potential issues with raw binary data files.  It represents binary code 

in an ascii text format that is easier to handle, easier to 

transfer electronically, and safer to transport.  It incorporates 

checksums so data integrity of a file can be verified.  It 

allows addressing of the data so it can comprehend gaps in 

the binary data it represents without having to “pad” the file 

with unnecessary blank data. Most importantly, it is the file 

format required for most PIC programmers, and is the output 

format of the compiled source that MPLabs* outputs.  See 

the Wikipedia here: http://en.wikipedia.org/wiki/Intel_HEX 

HEX Example 
:10010000214601360121470136007EFE09D2190140 

:100110002146017EB7C20001FF5F16002148011988 

:10012000194E79234623965778239EDA3F01B2CAA7 

:100130003F0156702B5E712B722B732146013421C7 

:00000001FF 

  Start code 

  Byte count 

  Address 

  Record type 

  Data 

  Checksum 

 



 

Renard Plus 
www.renard-plus.com 
 

Page 5 of 19 
 

PIC Programming Guide 

*Other brands and names may be claimed by others 

for more details. Many Renard boards offer “pre-complied” HEX files for “canned” situations.  

These typically mean you are using common serial interface data rates, typical clock settings, 

typical features, etc.  Again, it is important to match the HEX file to your board requirements.  For 

Renard Plus, if you get a HEX file from the product page for your board type, then you have the 

right thing, and for FREE!  For other boards, you may have to dig, or go to the board developer (if 

they are still around) to try to get code. The Wiki on many of the do-it-yourself Christmas lighting 

forums are a good place to start your search. You can also ask forum members (like at 

diychristmas.org) to compile a HEX for you (MOST members are friendly and helpful) if you are 

not able to handle those steps.   You might be able to get a HEX file, or you might get access to 

source to compile and if the latter is the case, you need to compile it as described in the MPLabs 

section later in this guide before you will have a HEX to program. 

2.2. Firmware Options 
The Renard hardware is designed to be very flexible and as such, there are a variety of options in 

the software to exploit that flexibility.  Here we will discuss the more common firmware options 

that you may want or need to use.  

2.2.1. Start Address 

The Renard protocol is designed to daisy-chain controllers in the order you want them addressed.  If 

you have one controller that has 16 channels first in line then a controller with 8 then one with 32- 

the data stream from the PC first goes into the first controller which takes the first 16 channels for 

itself and passes on the rest of the data stream (minus the first 16 channels) to the next controller.  

That next controller takes the first 8 channels of data, and passes along the rest (minus the first 8). 

The next controller takes the first 32 channels and passes the rest.  Etc.  Every controller in this 

situation takes the first data off the stream (whatever number of channels it needs) and passes along 

the rest.  From the PC, it looks like the first controller gets channels 1-16, the next 17-24, the next 

25-56, etc.  This is great if you can order your display in a daisy chain fashion, and you are not 

using wireless which are two reasons you might need to set a start address. 

As you may have noticed, in the example we talked about board channel counts in blocks of 8 

addresses.  The is because Renard started based on multiples of 16F688 PICs that can control 8 

channels and the software evolved around the concept that a Renard will consume blocks of 8 

channels.  The start address is designed the same way- it is calculated such that a start address tells 

you how many blocks of 8 channes the controller will ignore BEFORE it responds to the data 

stream.  Thus if you set a start address of 01, that means it will ignore 1x8=8 channels of the data 

stream before starting to respond therefore starting at address 9.  A 02 means 2x8=16 so it ignores 

the first 16 channels in the data stream effectively starting at channel 17.  And so on.  To calculate 

the actual start address the calculation is (nx8)+1 = start address where “n” is the start address 

number.  We cannot help you plan out your addresses, you will need to layout your yard and figure 

out what will need to map where.     

2.2.2. Baud Rate 

Baud rate is the speed in bits per second at which the communications between the computer and 

controller are run. A faster baud rate means more data in less time which could mean faster display 

updates and more channels supported.  The primary way to communicate with a Renard is via a 

serial COM port (that uses either RS232 or RS485 depending on your adapter/port).  Most 

operating systems (like Windows) have a maximum baud rate supported is usually either 115K or 

128K with 57.5K (57600) as no problem.  The plugin for Vixen 2.x also tends to top out at 57600 

but other animation software might support higher.  Renard controllers in general support a max of 



 

Renard Plus 
www.renard-plus.com 
 

Page 6 of 19 
 

PIC Programming Guide 

*Other brands and names may be claimed by others 

57600 but Renard Plus controllers go higher to 115K which is the practical top speed without 

running into stability issues.  So basically, you need to pick the top speed possible with your 

hardware/software and use that value for your setting.  With all Renard Plus and latest animation 

software, you should be able to support 115k baud but it might be wise to double check your 

software to see if it supports it.  On the Renard Plus site under the product pages, you will find 

archives of both 57600 and 115K re-complied.  With source, you can set it to what you want to 

support. 

2.2.3. PWM vs non-PWM 

PWM stands for Pulse Width Modification.  This is a mechanism that the PIC uses to do dimming.  

Basically the PIC can pulse the control off and on at a rate that allows the lights to dim (assuming 

your lights support this) by having the power lowered.  If you have a situation where you want the 

controller to be 100% on whenever the board is told the lights should be on (anywhere from 1% to 

100% dim level) then you disable PWM in the code to accomplish this. Non-dimable devices 

include florescent lights (the non-dimable kind), motors, servos, light strings with their own control 

box, etc.  The usual is to have PWM enabled so you can dim “normal” light strings including most 

DC lights. 

2.2.4. Zero Cross 

Zero Cross refers to a hardware mechanism used to determine when the AC line power used to 

power lights is crossing the 0 volt level of the alternating current.  Remember AC swings + and – 

using a sine wave and 120 time a second (for 60 hz) it hits 0 instantaneous volts as it starts to swing 

the current the other direction.  The controllers need to know when this happens so they can 

effectively PWM the SSR triac output.  A triac (used in most SSR) latches on and stays on until the 

AC voltage drops to 0V then it can unlatch (unless the control signal tells it to stay on).  If we want 

to DIM a triac based SSR, we watch for zero cross, then hold off enabling the triac until a period of 

time AFTER zero cross occurs thus limiting the voltage/current going out and achieving dimming.  

You may want to disable Zero Cross detect in some designs if a line AC signal is not available or 

you needed to disable AC dimming. 

2.2.5. Renard vs Renard DMX? 

One decision you need to make is if you will use Renard protocol, or DMX on your Renard.  This is 

not something we can tell you to use one or the other – we can just discuss the pros and cons.  

Please note that for some controllers the DMX version is a totally separate source base from the 

Renard code, and in some cases it is a build option in the source code.  

 Renard Protocol 2.2.5.1.

The Renard Protocol was originally developed by Phil Short as THE code to use on a Renard and 

has been exclusive to the do-it-yourself lighting community.  It is well supported by a loyal subset 

of do-it-yourselfers and enjoys a robust development following so innovations and improvements 

are being made to it all the time.  It is the most common firmware that is run on the Renard 

hardware so getting help with it is very easy on the do-it-yourself lighting forums.  It is based on a 

simple serial data stream (that can be RS232 or RS485 if you need distance) so interfaces are 

widely available, however, the handling and transmission of the data stream is a software thing so 

there are limits on how many different serial connections (for large “universe” displays) can be 

handled without stuttering or dropping packets.  The standard protocol is designed to have a 

controller delete the data it uses from the stream and pass along the rest.  This makes addressing 

boards EASY (they are all 0) as the location on the serial cable determines the board order.  This 

does not work well if you need to scatter around your channel address in your yard (such as 1-8 on 



 

Renard Plus 
www.renard-plus.com 
 

Page 7 of 19 
 

PIC Programming Guide 

*Other brands and names may be claimed by others 

one side and 9-16 on the other then back to 17-??) which can end up with a mess of data cables 

when changes in the physical board order are needed. Wireless is also a problem so to solve this 

there is the ability to force a start address (on an 8 channel boundary) if needed for Renard for 

limited cases.  Maximum data rate can also be an issue as Renard is limited to the lower data rates 

of a typical serial port – 57.6K is typical and 115K (maybe higher) is possible with some serial 

ports with tweaks to the OS and/or animation software.   

 DMX on Renard 2.2.5.2.

DMX, actually DMX512 and the related SACN E1.31 protocol, is a commercial lighting industry 

standard and has a large following in the rest of the light animation world.  See 

http://en.wikipedia.org/wiki/DMX512 for details.  If you buy a commercial lighting product, it will 

likely be DMX protocol that it understands.  Also DMX is used by other commercial lighting 

systems like LOR, etc. so if you need to mix other stuff in with your Renard, it might be a good 

idea to use DMX on your Renard. It has a much higher data rate capability as the standard calls out 

a 250K baud data rate.  To achieve that, DMX usually requires a special DMX interface that 

handles the transmission of the data stream in hardware so you are less likely to run into the 

troubles of feeding the data stream via software.  However, those interfaces are less common than 

RS232 and RS485 so these are much more expensive to obtain.   DMX exclusively uses start 

addressing, so the serial stream is the same everywhere rather than being modified along the way by 

each controller.  This is good for wireless although achieving wireless rates at DMX speeds has 

been an issue in the past and just recently solved with the new NRF transceiver based solutions now 

available. 

 Renard vs DMX Summary 2.2.5.3.

Both protocols are viable with the nod going to Renard for a pure do-it-yourself environment and 

cheaper interfaces.  DMX is good for mixing in commercial products WITH the do-it-yourself gear 

but has a higher entry price because of the interface.  We leave the choice to you although a board 

can usually be easily reprogrammed back and forth so you could start with one and switch to the 

other if you need.  Yay choice!!! 

   

2.3. Picking a Pic Programmer (HW/SW) 
The next thing you need is the actual programmer.  A programmer is usually a specialized piece of 

hardware that can manipulate the non-volatile (stays with power off) memory in a particular device.  

It knows how to handle the erase/program/verify/read steps to do that memory manipulation.  For 

the PIC parts, there are a number of very good options available to you for purchase from a variety 

of sources.  Again, yay choice!!  Which one you pick depends on what you need to do vs 

price/performance.  Here are some details that will be helpful to know: 

2.3.1. PICKit 

Microchip, so far, has developed a number of programming and debugger solutions for their PIC 

micros.  The most popular, by far, are the PICKit2* and PICKit3*.  Both have the ability to 

program a PIC separately (in an add-on ZIF socket), OR, if the Renard board offers an ICSP port, 

like Renard Plus, you can do programming “on board”.   

 

Microchip offers the top of the line PICKit3: 

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406

&dDocName=en538340&redirects=pickit3  



 

Renard Plus 
www.renard-plus.com 
 

Page 8 of 19 
 

PIC Programming Guide 

*Other brands and names may be claimed by others 

 

However, MicroChip has shared the design of the PICKits and allows 

other compatible/identical “third party” programmers to be offered usually 

at a lower price than the MicroChip ones!  (Hey, it is good for the PIC 

developer world to have choices).   Because of that, there are many good 

“third party” or aftermarket or “clone”  PICKit programmers available to 

you.  You can purchase from places like Mouser, Alibaba, EBay, DIY Lighting stores, etc. 

depending on your risk vs reward level and the price vs quality ratio you are willing to endure.  

There are some great inexpensive options, but there is also some real junk.  For 

beginners it is best to start with a PICKit or compatible and use a vendor, like the 

ones that support the DIY Lighting community. You can also look 

on Ebay, or Alibaba if you want- it is YOUR choice. But, you 

might ask, what about PICKit2 vs 3?  We try to answer that NEXT 

so read on!  

 

 PICKit 2 vs 3 2.3.1.1.

The MicroChip site PICKit 3 manual 

(http://ww1.microchip.com/downloads/en/DeviceDoc/PICkit_3_User_Guide_51795A.pdf) has this to say: 
The PICkit 3 programmer/debugger system is similar in function to the PICkit 2  
in-circuit debugger system. Similarities of the two debuggers include: 

• Powered via USB cable to PC 
• Provides a programmable voltage power supply 

 
The PICkit 3 differs from the PICkit 2 by providing: 

• Extended EE program image space (512 Kbytes) 
• True voltage reference 
• Increased voltage range (1.8-5V VDD; 1.8-14V VPP) 

 

Generally this means that newer parts, like PIC32 or future chips MIGHT only be supported by a 

Pickit3 or compatible. It is important to note that there are no known plans of changing the Renard 

designs to use any of the higher end parts that PICKit 2 cannot program so this capability is not 

very important for blinky use.  Anecdotal discussions on the web (Try Googling “PICKit2 vs 3”) 

seem to say that the PICKit 3 is slower and less reliable than PICKit 2 and has fewer features.    For 

example, the PICKit 2 has a capability of doing a 3 channel logic analyzer that does not seem to be 

available on PICKit 3. The author, while documenting the PICKit 3 software, ran into some 

difficulties running it on Windows 7 x64 but fortunately found running it in “Admin Mode”  

(Google it) seemed to correct most of its bad behavior.   

 

The bottom line is that EITHER version of the PICKit (or compatible) is a good choice for blinky 

work.   In the following section, we provide programming instructions for both flavors of the 

PICKit software. 

2.3.2. PICKit software 

So you have picked your PICKit and have a hex file you want to program.  What now?  Well here 

we walk you through an example programming process for the PICKit 3 (the PICKit 2 is identical 

operation by design).   

 



 

Renard Plus 
www.renard-plus.com 
 

Page 9 of 19 
 

PIC Programming Guide 

*Other brands and names may be claimed by others 

 PICKit 3 Programming Example 2.3.2.1.

Let’s assume you built a Renard Plus TR16 and just received your PICKit 3.  Here 

is what you do:  

 

1. Use the included CD of software, OR Download and Install your PICKit 3 

software from MicroChip: 
 http://ww1.microchip.com/downloads/en/DeviceDoc/PICkit3%20Programmer%20Application%20v3.10.zip    
Unzip and read the ReadMe.txt file for details on installing.  For this version you need to unzip 

“PICkit3 Programmer Application Setup v3.10.zip” and then run Setp.exe to install. 

 

 
 

Generally, just select the default options and everything should work.  You may need to install 

additional .NET pieces for the program to work but this is normal.  If you are running Win7 or 

higher, you will need to set the shortcut attributes to run in Admin Mode or it will not work. 

 

2. Plug in your PICkit 3.  First time you should see dialog about driver installation.  This is an 

example for Win7: 

 

          
 

3. Now unplug the programmer from the PC, attach it to the board (with part installed) in the 

ICSP port (or the ZIF socket with the part installed in it) and plug the PICKit back into the 

PC.  Leave the board powered off- the PICKit provides the power to program. Watch pin 1 

orientation!!  

 

4. Now run the PICKit 3 v3.10 program from the icon on your desktop or from the Windows 

Start/Programs/Microchip/PICKit 3 v3.10: 

 



 

Renard Plus 
www.renard-plus.com 
 

Page 10 of 19 
 

PIC Programming Guide 

*Other brands and names may be claimed by others 

 
 

After the firmware update, upon startup of the PICKit 3 while attached to a board ICSP (or ZIF 

with target part in the socket): 

 
This is what things should look like when it is all running properly and we are ready to start the 

programming process.  Note that the programmer found the PIC18F2525 that the Renard Plus TR16 

uses in the example we are showing. 

 

5. Before any other steps, we need to ERASE the part: 

 

 
If you load the HEX file, then trigger an erase, it will blank the data in memory you just loaded so 

ERASE before importing HEX files and keep in mind you should double check  the Program 

Memory window. 

PIC type 

detected. 

Successful PIC 

detection. 

Erase Button 
Successful 

erase of  the 

PIC 

Tools button 

to correct 

warning 

Note: special 

instructions to follow 

first time for the 

programmer.  You may 

not need to do this step 

if your PICKit is 

loaded with the correct 

firmware. See PICKit 

software guide for 

more details. 

 

Note all FFFF 

blank data! 



 

Renard Plus 
www.renard-plus.com 
 

Page 11 of 19 
 

PIC Programming Guide 

*Other brands and names may be claimed by others 

 

6. Next we need to load the precompiled HEX file (this step is always AFTER erasing).  You 

should have already downloaded from the http://renard-plus.com site on the product page 

for your board or from the appropriate repository for your particular board.  For this 

example, we have accessed the TR16 product page and picked the 57600 baud rate package 

and downloaded.  After opening the ZIP package, we extracted the 00 address file (to 

remain compatible with other Renards on the chain) so the example file name is RPTR16-

00-57600.hex  (you need to pick the appropriate file for your situation and keep it where 

you remember where to access it.) 

 

                                    
 

 

7. Now we program by clicking the “Write” button.  You will see status messages roll by in 

the status window and if the programming completes you will see: 

 

 
 

8. Not absolutely required but just a darn good idea and highly recommended is doing a Verify 

after the write.  This will read back the part memory and compare against what should have 

been programmed.  It is rare to have a verify fail, but it does happen! 

 

Valid data 

Success 

File then 

Import 

Hex 

File that 

was loaded 

Write button 

Successful 

import of 

HEX 



 

Renard Plus 
www.renard-plus.com 
 

Page 12 of 19 
 

PIC Programming Guide 

*Other brands and names may be claimed by others 

          
 

Once it verifies, your firmware is on the chip and you can disconnect the programmer (or remove it 

from the ZIF socket and install back in the board) and fire up the board to test. 

 

Common Problems: 

 

- Verifies but does not work in good board: You might have forgotten to reload the HEX file 

after erasing.  The program tends to clear out its buffer on an erase so you must reload after 

every erase.  This is an easy one to get messed up on- it happens to the author all the time.  

A hint is to look for data in the Program Memory window on the PICKit software before 

programming.  If you see all FFFF, then you probably do not have a HEX file loaded. 

 

- Fails to verify: If you forget to erase a part that was previously programmed and then 

program with new data, you can get a program succeeded, but fails to verify.  You simply 

need to start over and follow the programming process remembering to erase first, then load. 

 

- Fails to program:  This may be a bad chip or an issue with the programming socket (i.e. the 

PIC socket on a Renard Plus board).  Things to try- check the board for unsoldered pins on 

the PIC or ICSP header.  Check the PIC for bent pins.  Make sure the PICKit software is 

correctly identifying the part.  Re-try the programming process making sure to erase.  A 

Blank Check might also be a good idea after an erase in this case to be sure things are really 

erasing.  Try another part- if things work, then you have a bad part. 

 

 PICKit 2 Programming Example 2.3.2.2.

When you purchased you programmer, you should have received either a disk with the software, or 

a link to download the PICKit2 software. 

You can also get a copy directly from MicroChip here: 

http://ww1.microchip.com/downloads/en/DeviceDoc/PICkit%202%20v2.61.00%20Setup%20A.zip  

 

Check on this page for updated information, other tools, etc. 

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocNam

e=en023805 

 

Verify button 

Success 



 

Renard Plus 
www.renard-plus.com 
 

Page 13 of 19 
 

PIC Programming Guide 

*Other brands and names may be claimed by others 

Here is a funny thing- the PICKit 2 Programming is exactly the same as the PICKit 3 (as above) 

just it will say PICKit 2 wherever it says PICKit 3 as we show in the screen shots or directions  

above.  Just follow those exact same steps- Microchip intentionally duplicated the PICKit 2 

experience on the PICKit 3 so this is by design. 

 

2.3.3. Proprietary 

Proprietary (i.e. NOT PICkit compatible) programmers can be used also as long as 

the support the PIC parts we need to program.  Unfortunately we cannot give you 

screen shots or examples.  Take a look at the process for the PICKits and it should be 

VERY similar process: 

 

- Install programming software, 

- Attach to device to be programmed (it may be a ZIF only solution)\ 

o If it is in circuit via the ICSP, you will need to check to see if the programmer 

powers the chip or if you need to apply external power (like the board power 

system). 

- Recognize the right part or manually configure it (some progammers may not be able to 

detect the chip type and need to be told manually what part you want to program. 

- ERASE 

- Load or Import HEX file.  Note: it is possible that some programmers do NOT accept HEX 

file as a file format.  It may need a BIN file.  There are utilities that may be included with 

your programmer software to convert a HEX file to binary (HEX2BIN is a very commonly 

available utility- just Google it). 

- Program / Write 

- Verify 

- BLINK LIGHTS!! 

 

2.4. ZIF Sockets 
ZIF stands for Zero Insertion Force.  A ZIF socket allows easier installation and 

removal for applications such as programmers where you are programming loose 

parts.  This is needed for some of the Renard board designs like the SS16 or 

Headblinker boards that do not support on-board programming through an ICSP 

connector.  Some programmers come with a ZIF capability built in. However, many of the common 

PICKit or compatible designs do not natively support handling programming the PIC out of the 

board.  For those cases you might want to consider getting a ZIF socket that works with your 

programmer.  When you purchase your programmer, often there are “bundled” options like this 

PICKit 3 and ZIF kit: 



 

Renard Plus 
www.renard-plus.com 
 

Page 14 of 19 
 

PIC Programming Guide 

*Other brands and names may be claimed by others 

   
 

If you already have your PICKit programmer or equivalent and want to add off-board programming 

capability you can find many offerings like: 

 
(this ZIF is easy to configure and use with just about ANY size thru-hole PIC, and any PICKit that 

supports ICSP capability.  This is the ZIF the author uses for situations where there is no ICSP 

connector available.  It is easy to use and very flexible.) 

2.5. MPLab 
MPLab is the IDE (Integrated Development Environment) from Microchip that allows the Renard 

control software to be compiled into firmware that is programmed into the PIC.  We assume that 

you have successfully downloaded and installed the MPLAB code from the Microchip website and 

that the software is at version v8.86 or newer.  To use MPLabs to program the PIC directly, you 

need to have a PICKit or compatible programmer (as described before), or one of the other 

programmers that MPLabs supports (check with Microchip for details).  MPLabs is most useful for 

compiling and programming from source, rather than to program a pre-compiled HEX.  Using 

MPLabs to program a HEX file can be done but is much more cumbersome than using the PICKit 

Debug/Programming software.  However, the setup required for HEX programming is also needed 

to do a compile/program so the steps are useful (at least for the configuration steps). 

2.5.1. Installing MPLabs 

Our recommendations is to use the older MPLab (8.6.xx) from the archives at Microchip archives 

because in our experience it is easier to use, supports more devices, and is less picky about the 

programming style than the newer version. Most of the Renard code has been developed using 

version 8 or older of MPLabs and they may not translate well to the newer MPLab X version 

without some code changes.  

 

Additionally, in order to avoid path issues with files, we highly recommend installing MPLabs on 

the default locations on Drive C.   In theory, it is possible to adapt to other locations, but MPLabs 

hardcodes drive letters. 

 

 



 

Renard Plus 
www.renard-plus.com 
 

Page 15 of 19 
 

PIC Programming Guide 

*Other brands and names may be claimed by others 

2.5.2. HEX handling with MPLabs 

 

First start of by opening MPLAB 

 
Initial MPLAB IDE screen 

 

If you do not see the output screen it can be opened using the View Menu and the second option 

will be Output. 

 



 

Renard Plus 
www.renard-plus.com 
 

Page 16 of 19 
 

PIC Programming Guide 

*Other brands and names may be claimed by others 

Step 1 Configure Device 

 

 
Select Device Screen 

 

Use the device drop-down box to select the PIC chip you will be programming. All of the other 

boxes and controls can be left to default. 

 

Step 2 Configure Programmer 

 

 
Programmer Menu 

 

From this menu select the programmer you will be using. Once selected the little check mark will 

be positioned on the programmer you selected. 

 



 

Renard Plus 
www.renard-plus.com 
 

Page 17 of 19 
 

PIC Programming Guide 

*Other brands and names may be claimed by others 

Step 3 Importing Pre-compiled HEX file 

 

On the file menu you will see a menu item titled Import: 

 
 

Select this option and the IDE will open a standard Windows Open window that will allow you to 

traverse to the folder on your computer where your HEX files are located: 

 

 
 

Once you have located and selected your hex file the MPLAB software will display in the output 

window that the file has successfully been loaded. 

 

 
 

Step 4 Erase (if your part has been programmed before), Program and Verify PIC Chip 

 

At this point, you part is programmed and ready to use.  If you have an ICSP enabled board, you 

should now be able to power up and start using your board.  For other solutions, you need to install 

the part in the appropriate spot of the board and proceed with any other programming and/or 

assembly you need to do. 



 

Renard Plus 
www.renard-plus.com 
 

Page 18 of 19 
 

PIC Programming Guide 

*Other brands and names may be claimed by others 

2.5.3. Source handling with MPLabs 

The real use for MPLabs is to be able to make modifications to the source code (like the options we 

discussed previously in the section “Firmware Options”) and compile then program the resulting 

HEX.  One of the most common reasons for re-compiling a project is to change the start address or 

baud rate, and rarely for a bug fix.   This section will walk you through the basic steps of 

modifying, compiling, and re-programming a PIC chip. 

 

 Rebuilding and re-compiling Renard-Plus Projects 2.5.3.1.

Setting up MPLabs and creating projects is a reasonably complicated process.  The best advise we 

can give you is to spend some time on the MicroChip website exploring the tutorials there to learn 

about how MPLabs works and its use in general.  We will try to provide some common “recipes” 

for “cooking” your own firmware but a knowledge of MPLabs will be required and is beyond our 

capability to provide in this document.  We promise to try to improve this as we go, but again, 

because of the complexity, the MPLabs knowledge is best obtained from the provider- MicroChip.   

 

TBD: This section applies to RP source and is a work in progress and will cover these topics and 

hopefully more: 

- Detail source installation and access via IDE.  

- Describe ASM variables.   

- Show common settings.   

- Screenshots of successful steps.   

- Troubleshooting for issues. 

 

 

 

  



 

Renard Plus 
www.renard-plus.com 
 

Page 19 of 19 
 

PIC Programming Guide 

*Other brands and names may be claimed by others 

 Notes  3.

This area provided for you to keep notes on the programming process as you see fit. 


