A Lighting
¥ Control

Pic Programming Guide

Oct 2013
Doc Rev 0.01

) Lighting
9 Control

Contents
1. Introduction to Renard Pic Programmingcccecueiiiiiiiiiiiiiniieeniieeieeeiee et 3
2. WRhat dO I NEEAT ..ottt ettt ettt 4
2.1 What 18 HEX ..ottt ettt st e st e e s 4
2.2, FAIrMWAre OPLOMNS.eiiiiiiiiiiieeitee ettt et e ettt et e e st e e st e e st e e e sabeeesabeesnsbeesnsteesnseesnseeesanees 5
22,10 StArt AddAIESS ..ceueieiiieiieeie ettt ettt ettt et ettt as 5
2.2.20 BaAUA RALE...coiiiiiiiiiee ettt 5
2.23. PWM VS NON-PWM.. ..ottt et 6
224, Z8T0 CTOSS -ttt ettt ettt ettt ettt et e s at e e bt e s bt e et e h bt e bt e bt e e bt e nat e e bt e e ateeteenate s 6
2.2.5. Renard vs Renard DIMX7......cooiiiiiiiiiiie et 6
2.2.5.1. Renard ProtOCO]couiiiiiiiiiieieeteee e 6
2252, DMX 0N RENAT ...couviiiiiiiiiiiiiieeeeee et 7
2.2.5.3. Renard vS DMX SUMMATYc.ceeeiiieriiieeiieeeiieeeieeeeieeesveeesveeesveeeeveeesneeseneeenns 7
2.3. Picking a Pic Programmer (HW/SW)cooiiiii e 7
23010 PICKIE ottt ettt et ettt b et e e s 7
23,110 PICKIE 2 VS 3 ettt ettt ettt ettt e e esane s 8
2.3.2. PICKIt SOITWATE ...cueviiiiiiiieiienieete ettt ettt ettt e e 8
2.3.2.1. PICK:it 3 Programming EXample..........ccccceriiiiiiiniiiiiinieiieniceeeeeeee e 9
2.3.2.2. PICKit 2 Programming EXample...........cccccuieiiiiiiniiiieiiieeieeeiee e 12
20 20 TR = () 014 (S 71) 2O O OO PP PP 13
24, ZIE SOCKELS ...ttt ettt ettt ettt et sh b e bbb bt e st ebee e 13
2.5. MPLAD ..ottt ettt ettt e e e 14
2.5. 1. Installing MPLADScooiiiiiiiie et 14
2.5.2. HEX handling with MPLaDS..........cccoiiiiiiieiiecieeceee et 15
2.5.3. Source handling with MPLaDS........cccccooiiiiiiiieieeeece e 18
2.5.3.1. Rebuilding and re-compiling Renard-Plus Projectscccoceerviiinviiennieennnenn. 18
B U NOEES ettt ettt et a et e bt eeh bt e e bt e e s bt e s baeesbaeesneeens 19

Renard-Plus, Salem, Oregon 97302

© 2011-2013 Renard Plus. All rights reserved.
Published 2013

Printed in United States

Renard-Plus (“Developer”) has made every effort to ensure the accuracy of this document. Developer makes no warranties with respect to this
documentation and disclaims any implied warranties of merchantability and fitness for a particular purpose. The information in this document is subject to
change without notice. Developer assumes no responsibility for any errors that may appear in this document.

The information contained herein is the exclusive and confidential property of Renard Plus, except as otherwise indicated.
We wish to also thank the DIY lighting community for the inspiration it has given us in the development of this product.

Trademarks the Renard Plus logo are trademarks of Renard Plus.
All other trademarks acknowledged.

Renard Plus Page 2 of 19 PIC Programming Guide
www.renard-plus.com

*Other brands and names may be claimed by others

1. Introduction to Renard Pic Programming

You are likely reading this because you just finished building your first of many
Renard light controllers. You realized that beyond the PCB, parts, soldering,
casing, and wiring of the hardware, there is something called “Programming” that
is needed. You might have also realized it is all a bit confusing and you need some
guidance. Congratulations, you have opted to research the process and try to learn
about it instead of just getting frustrated and getting mad at the developers.
Hopefully, you have come to the right place and we can help educate, guide, and B
generally support you in your efforts. Before we get into the software, bit twiddling, settmg Vpp,
flashing, erasing, etc. we need a little background.

Renard is a lighting controller concept developed by Phil Short. He developed a set of
hardware and firmware (the software) to have a microcontroller (originally the “PIC”
16F688 available from MicroChip*) respond to a computer generated serial

#M command/data stream he defined as “Renard Protocol”. To teach the PIC how to read
and respond appropriately to “Renard” he developed the original Renard PIC source code. This,
with a tool-chain/IDE known as MPLab (free from MicroChip), can be compiled into a binary
image (HEX file) that is then programmed into the PIC. If you have a “canned” (pre-configured)
HEX file, the process to program it is fairly straight forward. However, if you need to customize the
code in any way, then things get a bit more complex as we will try to explain.

Another thing to keep in mind is that you need to obtain the proper code (either source or HEX
files) for the appropriate hardware. Since the time Mr. Short developed Renard, there have been
many innovators like Mac, Dean, Brian, etc. who have created designs and enhanced Renard to fill
out the designs available to address user’s desired capabilities. The Renard-Plus line, including the
“Simple” series and “Plus” series of boards is a great example of this. These controllers have
adapted new features, or used different versions of the PIC microcontroller than the original 16F688
part Mr. Short originally used. That means different code is necessary to run Renard on those
boards. If you have an SS16, you need the code indicated for the SS16, if you have an RP32, you
need the RP32 code (either source or canned HEX) FOR the RP32, etc. Some code covers a number
of different designs. For the Renard Plus controllers, obtaining the proper code is easy because the
code, (source and canned HEX), is available on the appropriate product page on the www.renard-
plus.com website. There are also other “flavors” of Renard code, such as the Renard DMX
available for some boards that allows a Renard board to learn a different communications protocol
(see Wikipedia on DMX).

We will try to address all of this in this document and try to make the options a little less confusing.

Renard Plus Page 3 of 19 PIC Programming Guide
www.renard-plus.com

*Other brands and names may be claimed by others

% Lighting
9 Control

2. What do | need?

That is a good question, but to answer it we need to understand a few more details before we can
answer. What you need depends on the board you are using and what you want to do with the code.
For example, if your requirements match an existing HEX file configured the way you need, and
you have a Renard-Plus design, the list of requirements to be able to program is much shorter.
Other situations can be more complicated. For our examples, we will mostly talk about the Renard
Plus boards as we know them best. The general information applies to programming any of the
currently known Renard controllers so if you are an SS, Renbus, Headblinker, or any of the other
Renard variants, this information should help you also.

What I am doing
Have a precompiled HEX for my
board that matches my needs.

| List of needs
The hex file

From where
The web (e.g. renard-
plus.com). email, a

WIKI, where ever.
PIC Programmer’ (see description)
Programmer S/W e.g. | Microchip, or Pic
PICKit Programmer vendor

I have source because my use is not | Renard Source The web (e.g. renard-

typical. (appropriate to board) | plus.com)
MPLabs MicroChip website
Some programming Various places
experience including MicroChip
website.

PIC Programmer’ (see description)
Programmer S/W e.g. | Microchip, or Pic
MPLabs Programmer vendor

'NOTE: If you have a board that does NOT support on-board programming through an ICSP
connector, then you likely will additionally need a ZIF socket if your programmer does not include
one — see the ZIF Sockets section for more details.

2.1. What is HEX

HEX is a file format for a firmware data developed by Intel for handling binary data without the
difficulties associated with the potential issues with raw binary data files. It represents binary code

in an ascii text format that is easier to handle, easier to
transfer electronically, and safer to transport. It incorporates
checksums so data integrity of a file can be verified. It
allows addressing of the data so it can comprehend gaps in
the binary data it represents without having to “pad” the file
with unnecessary blank data. Most importantly, it is the file

HEX Example
:10010000214601360121470136007EFEQ9D2190140
:100110002146017EB7C20001FF5F16002148011988
:10012000194E79234623965778239EDA3F 01B2CAAT
:100130003F0156702B5E7128722B732146013421C7
:00000001FF

[] start code

[] Byte count

[] address

H Eegom type format required for most PIC programmers, and is the output
0 Cieiksum format of the compiled source that MPLabs* outputs. See
the Wikipedia here: http://en.wikipedia.org/wiki/Intel HEX
Renard Plus Page 4 of 19 PIC Programming Guide

www.renard-plus.com

*Other brands and names may be claimed by others

for more details. Many Renard boards offer “pre-complied” HEX files for “canned” situations.
These typically mean you are using common serial interface data rates, typical clock settings,
typical features, etc. Again, it is important to match the HEX file to your board requirements. For
Renard Plus, if you get a HEX file from the product page for your board type, then you have the
right thing, and for FREE! For other boards, you may have to dig, or go to the board developer (if
they are still around) to try to get code. The Wiki on many of the do-it-yourself Christmas lighting
forums are a good place to start your search. You can also ask forum members (like at
diychristmas.org) to compile a HEX for you (MOST members are friendly and helpful) if you are
not able to handle those steps. You might be able to get a HEX file, or you might get access to
source to compile and if the latter is the case, you need to compile it as described in the MPLabs
section later in this guide before you will have a HEX to program.

2.2, Firmware Options
The Renard hardware is designed to be very flexible and as such, there are a variety of options in
the software to exploit that flexibility. Here we will discuss the more common firmware options
that you may want or need to use.

2.2.1. Start Address
The Renard protocol is designed to daisy-chain controllers in the order you want them addressed. If
you have one controller that has 16 channels first in line then a controller with 8 then one with 32-
the data stream from the PC first goes into the first controller which takes the first 16 channels for
itself and passes on the rest of the data stream (minus the first 16 channels) to the next controller.
That next controller takes the first 8 channels of data, and passes along the rest (minus the first 8).
The next controller takes the first 32 channels and passes the rest. Etc. Every controller in this
situation takes the first data off the stream (whatever number of channels it needs) and passes along
the rest. From the PC, it looks like the first controller gets channels 1-16, the next 17-24, the next
25-56, etc. This is great if you can order your display in a daisy chain fashion, and you are not
using wireless which are two reasons you might need to set a start address.
As you may have noticed, in the example we talked about board channel counts in blocks of 8
addresses. The is because Renard started based on multiples of 16F688 PICs that can control 8
channels and the software evolved around the concept that a Renard will consume blocks of 8
channels. The start address is designed the same way- it is calculated such that a start address tells
you how many blocks of 8 channes the controller will ignore BEFORE it responds to the data
stream. Thus if you set a start address of 01, that means it will ignore 1x8=8 channels of the data
stream before starting to respond therefore starting at address 9. A 02 means 2x8=16 so it ignores
the first 16 channels in the data stream effectively starting at channel 17. And so on. To calculate
the actual start address the calculation is (nx8)+1 = start address where “n” is the start address
number. We cannot help you plan out your addresses, you will need to layout your yard and figure
out what will need to map where.

2.2.2. Baud Rate
Baud rate is the speed in bits per second at which the communications between the computer and
controller are run. A faster baud rate means more data in less time which could mean faster display
updates and more channels supported. The primary way to communicate with a Renard is via a
serial COM port (that uses either RS232 or RS485 depending on your adapter/port). Most
operating systems (like Windows) have a maximum baud rate supported is usually either 115K or
128K with 57.5K (57600) as no problem. The plugin for Vixen 2.x also tends to top out at 57600
but other animation software might support higher. Renard controllers in general support a max of

Renard Plus Page 5 of 19 PIC Programming Guide
www.renard-plus.com

*Other brands and names may be claimed by others

57600 but Renard Plus controllers go higher to 115K which is the practical top speed without
running into stability issues. So basically, you need to pick the top speed possible with your
hardware/software and use that value for your setting. With all Renard Plus and latest animation
software, you should be able to support 115k baud but it might be wise to double check your
software to see if it supports it. On the Renard Plus site under the product pages, you will find
archives of both 57600 and 115K re-complied. With source, you can set it to what you want to
support.

2.2.3. PWM vs non-PWM
PWM stands for Pulse Width Modification. This is a mechanism that the PIC uses to do dimming.
Basically the PIC can pulse the control off and on at a rate that allows the lights to dim (assuming
your lights support this) by having the power lowered. If you have a situation where you want the
controller to be 100% on whenever the board is told the lights should be on (anywhere from 1% to
100% dim level) then you disable PWM in the code to accomplish this. Non-dimable devices
include florescent lights (the non-dimable kind), motors, servos, light strings with their own control
box, etc. The usual is to have PWM enabled so you can dim “normal” light strings including most
DC lights.

2.2.4. Zero Cross
Zero Cross refers to a hardware mechanism used to determine when the AC line power used to
power lights is crossing the 0 volt level of the alternating current. Remember AC swings + and —
using a sine wave and 120 time a second (for 60 hz) it hits O instantaneous volts as it starts to swing
the current the other direction. The controllers need to know when this happens so they can
effectively PWM the SSR triac output. A triac (used in most SSR) latches on and stays on until the
AC voltage drops to OV then it can unlatch (unless the control signal tells it to stay on). If we want
to DIM a triac based SSR, we watch for zero cross, then hold off enabling the triac until a period of
time AFTER zero cross occurs thus limiting the voltage/current going out and achieving dimming.
You may want to disable Zero Cross detect in some designs if a line AC signal is not available or
you needed to disable AC dimming.

2.2.5. Renard vs Renard DMX?
One decision you need to make is if you will use Renard protocol, or DMX on your Renard. This is
not something we can tell you to use one or the other — we can just discuss the pros and cons.
Please note that for some controllers the DMX version is a totally separate source base from the
Renard code, and in some cases it is a build option in the source code.

2.2.5.1. Renard Protocol
The Renard Protocol was originally developed by Phil Short as THE code to use on a Renard and
has been exclusive to the do-it-yourself lighting community. It is well supported by a loyal subset
of do-it-yourselfers and enjoys a robust development following so innovations and improvements
are being made to it all the time. It is the most common firmware that is run on the Renard
hardware so getting help with it is very easy on the do-it-yourself lighting forums. It is based on a
simple serial data stream (that can be RS232 or RS485 if you need distance) so interfaces are
widely available, however, the handling and transmission of the data stream is a software thing so
there are limits on how many different serial connections (for large “universe” displays) can be
handled without stuttering or dropping packets. The standard protocol is designed to have a
controller delete the data it uses from the stream and pass along the rest. This makes addressing
boards EASY (they are all 0) as the location on the serial cable determines the board order. This
does not work well if you need to scatter around your channel address in your yard (such as 1-8 on

Renard Plus Page 6 of 19 PIC Programming Guide
www.renard-plus.com

*Other brands and names may be claimed by others

one side and 9-16 on the other then back to 17-??) which can end up with a mess of data cables
when changes in the physical board order are needed. Wireless is also a problem so to solve this
there is the ability to force a start address (on an 8 channel boundary) if needed for Renard for
limited cases. Maximum data rate can also be an issue as Renard is limited to the lower data rates
of a typical serial port — 57.6K is typical and 115K (maybe higher) is possible with some serial
ports with tweaks to the OS and/or animation software.

2.2.5.2. DMX on Renard
DMX, actually DMX512 and the related SACN E1.31 protocol, is a commercial lighting industry
standard and has a large following in the rest of the light animation world. See
http://en.wikipedia.org/wiki/DM X512 for details. If you buy a commercial lighting product, it will
likely be DMX protocol that it understands. Also DMX is used by other commercial lighting
systems like LOR, etc. so if you need to mix other stuff in with your Renard, it might be a good
idea to use DMX on your Renard. It has a much higher data rate capability as the standard calls out
a 250K baud data rate. To achieve that, DMX usually requires a special DMX interface that
handles the transmission of the data stream in hardware so you are less likely to run into the
troubles of feeding the data stream via software. However, those interfaces are less common than
RS232 and RS485 so these are much more expensive to obtain. DMX exclusively uses start
addressing, so the serial stream is the same everywhere rather than being modified along the way by
each controller. This is good for wireless although achieving wireless rates at DMX speeds has
been an issue in the past and just recently solved with the new NRF transceiver based solutions now
available.

2.2.5.3. Renard vs DMX Summary
Both protocols are viable with the nod going to Renard for a pure do-it-yourself environment and
cheaper interfaces. DMX is good for mixing in commercial products WITH the do-it-yourself gear
but has a higher entry price because of the interface. We leave the choice to you although a board
can usually be easily reprogrammed back and forth so you could start with one and switch to the
other if you need. Yay choice!!!

2.3. Picking a Pic Programmer (HW/SW)
The next thing you need is the actual programmer. A programmer is usually a specialized piece of
hardware that can manipulate the non-volatile (stays with power off) memory in a particular device.
It knows how to handle the erase/program/verify/read steps to do that memory manipulation. For
the PIC parts, there are a number of very good options available to you for purchase from a variety
of sources. Again, yay choice!! Which one you pick depends on what you need to do vs
price/performance. Here are some details that will be helpful to know:

2.3.1. PICKit
Microchip, so far, has developed a number of programming and debugger solutions for their PIC
micros. The most popular, by far, are the PICKit2* and PICKit3*. Both have the ability to
program a PIC separately (in an add-on ZIF socket), OR, if the Renard board offers an ICSP port,
like Renard Plus, you can do programming “on board”.

Microchip offers the top of the line PICKit3:
http://www.microchip.com/stellent/idcplg?IdcService=SS GET PAGE&nodeld=1406
&dDocName=en538340&redirects=pickit3

Renard Plus Page 7 of 19 PIC Programming Guide
www.renard-plus.com

*Other brands and names may be claimed by others

However, MicroChip has shared the design of the PICKits and allows
other compatible/identical “third party” programmers to be offered usually
at a lower price than the MicroChip ones! (Hey, it is good for the PIC
developer world to have choices). Because of that, there are many good
“third party” or aftermarket or “clone” PICKit programmers available to
you. You can purchase from places like Mouser, Alibaba, EBay, DIY Lighting stores, etc.
depending on your risk vs reward level and the price vs quality ratio you are willing to endure.
. “figmw There are some great inexpensive options, but there is also some real junk. For
HE—-) beginners it is best to start with a PICKit or compatible and use a vendor, like the
ones that support the DIY Lighting community. You can also look
on Ebay, or Alibaba if you want- it is YOUR choice. But, you
2Tgas might ask, what about PICKit2 vs 37 We try to answer that NEXT
Eemro1itca, 2o e onea SO read on!

- Coempatible with FICKiTd, MPLAR IDE
= Witk XP, Vista, 7, Liss, Mt O | 32/64]

2.3.1.1. PICKit 2vs 3
The MicroChip site PICKit 3 manual
(http://ww1.microchip.com/downloads/en/DeviceDoc/PICkit 3 User Guide 51795A.pdf) has this to say:
The PICKit 3 programmer/debugger system is similar in function to the PICkit 2
in-circuit debugger system. Similarities of the two debuggers include:
 Powered via USB cable to PC
* Provides a programmable voltage power supply

The PICKit 3 differs from the PICkit 2 by providing:
» Extended EE program image space (512 Kbytes)
* True voltage reference
* Increased voltage range (1.8-5V VDD; 1.8-14V VPP)

Generally this means that newer parts, like PIC32 or future chips MIGHT only be supported by a
Pickit3 or compatible. It is important to note that there are no known plans of changing the Renard
designs to use any of the higher end parts that PICKit 2 cannot program so this capability is not
very important for blinky use. Anecdotal discussions on the web (Try Googling “PICKit2 vs 37)
seem to say that the PICKit 3 is slower and less reliable than PICKit 2 and has fewer features. For
example, the PICKit 2 has a capability of doing a 3 channel logic analyzer that does not seem to be
available on PICKit 3. The author, while documenting the PICKit 3 software, ran into some
difficulties running it on Windows 7 x64 but fortunately found running it in “Admin Mode”
(Google it) seemed to correct most of its bad behavior.

The bottom line is that EITHER version of the PICKit (or compatible) is a good choice for blinky
work. In the following section, we provide programming instructions for both flavors of the
PICK:it software.

2.3.2. PICKit software
So you have picked your PICKit and have a hex file you want to program. What now? Well here
we walk you through an example programming process for the PICKit 3 (the PICKit 2 is identical
operation by design).

Renard Plus Page 8 of 19 PIC Programming Guide
www.renard-plus.com

*Other brands and names may be claimed by others

2.3.2.1. PICKit 3 Programming Example
Let’s assume you built a Renard Plus TR16 and just received your PICKit 3. Here
is what you do:

1. Use the included CD of software, OR Download and Install your PICKit 3
software from MicroChip:
http://ww1.microchip.com/downloads/en/DeviceDoc/PICkit3%20Programmer%?20Application%20v3.10.zip
Unzip and read the ReadMe.txt file for details on installing. For this version you need to unzip
“PICkit3 Programmer Application Setup v3.10.zip” and then run Setp.exe to install.

B Pickit 3310 =

Welcome to the PICkit 3 v3.10 Setup Wizard

MicrocHIP

The installer will guide you through the steps required to install PICKit 8 v3.10 on your
computer.

WARNING: This computer program is protecled by copyright law and international
realies. Unauthorized duplication or distribution of tis program, or any portion of it
may resultin severe civil or criminal penalties, and will be prosecuted to the
maximum extent possible under the law.

Cancel < Back

Generally, just select the default options and everything should work. You may need to install
additional .NET pieces for the program to work but this is normal. If you are running Win7 or
higher, you will need to set the shortcut attributes to run in Admin Mode or it will not work.

2. Plug in your PICKkit 3. First time you should see dialog about driver installation. This is an
example for Win7:

Installing device driver software

USB Input Device installed

PICkit 3 s Searching Windows Update...
USB Input Device Ready to use
Obtaining device driver software from Windows Update might take a while. P : v y
Skip obtaining driver software from Windows Update
Close | [Close_]

3. Now unplug the programmer from the PC, attach it to the board (with part installed) in the
ICSP port (or the ZIF socket with the part installed in it) and plug the PICKit back into the
PC. Leave the board powered off- the PICKit provides the power to program. Watch pin 1
orientation!!

4. Now run the PICKit 3 v3.10 program from the icon on your desktop or from the Windows
Start/Programs/Microchip/PICKit 3 v3.10:

Renard Plus Page 9 of 19 PIC Programming Guide
www.renard-plus.com

*Other brands and names may be claimed by others

Note: special
instructions to follow
first time for the
programmer. You may
not need to do this step

if your PICKit is
loaded with the correct
firmware. See PICKit
software guide for
more details.

Ble DeviceFamiy Programmer Tools View Help

Device
Deve: Mot Prosent
UserlDs: 00000000
Checksum: 0000 OSCCAL: 0000 BandGep
| The PICKit 3 is in MPLAB mode. Use the Tools menu MICROCHIP
1o download an OS compatible with this appiication
VODPIOa 3
25
Program Memory
Hex Orty Source: [None (EmptyErased)
EEPROM Data
Hex
PICkit™ 3

€\ Lighting
Control

Tools button

to correct
warning

After the firmware update, upon startup of the PICKit 3 while attached to a board ICSP (or ZIF

with target part in the socket):

Successful PIC

detection.

Devee: PICISF2S2S 070 1FIF 8300 0085
User On FF FF FF FF FF FF FF FF —

Oheckaum 4302
PICiit 3 connected. 1D = DEFAULT_PK3 MiCROCHIP
PIC Device Four
V00 PO 3

(o 50 :
[CRews] [wae | [vety | [Gome | [Bonkreex MR
Program Memory
7 Etied [HexOny, Source. Nore (Ence) Erssed)

S0 e rrrr rer o v
o060 rrrr rrre e e ey
0 rrrr rrre e e ey
o0 rrrr rrrr e e ey
%0 rrrr rrre mrer e e
A0 Frrr rrre e e Emr ey
oS0 rrrr were yree veewwrrgwer

EEEEEEEEEEEE]

EEPROM Data
7 Eratied HexOnty

000 £ FF FF FT T FF F FF FF OF FF OF UF PF OF Y 4
010 FT T FT FT T FT FT FF FT FT FT FT FF NT AT IY
e
ey

020 ¥ FE FY FT FT FT FT RV
0% FrrrErET PR RT RT EY

Ado impot Hex |

| Ve Cevee |
Fload Device + |
| Bt Hex e

PICkit™ 3

PIC type

detected.

This is what things should look like when it is all running properly and we are ready to start the
programming process. Note that the programmer found the PIC18F2525 that the Renard Plus TR16
uses in the example we are showing.

5. Before any other steps, we need to ERASE the part:

Erase Button

PiCkit 3
File DeviceFamily Prognmmer Tools View Help

PICIBF Configuration
Devce: PCISF2525 070 FIF 830 008
User IDs: FF FF FF FF FF FFFF FF ez B gy
Checksum: 4342
Erasing device. Complete
VOO POt 3
- S On 50 °
(LRost] (e) [voty [| G] [0k]) -
Program Memory
[¥] Enabled [HexOny v Source: Nane (Empty/Erased)
0000 FFFF FEFF FFEF FEEF ERFF FEEF EEFFEEEE
0010 FEEY ey e 14 B 141 S 1440
0020 FEFF FEFF FEFF FEFF FEEF FEFF FEFF FEFF
0030 FFFF FFFF FFFF FFFF FFFF FEEF FEFF FEEF
0040 FFFF FEFF FFFF FEEF FRFF FEEF FEFF FEEF
0050 FFFF FEFF FFFF FEFF FRFF FEEF FEEF FEEF
o060 Frr prrE ErEE FPRE PERE PEREE PTREEPRRE o
0070 FEET FrEE FEEE rrEY e FEFY FEET FEEE -
00 FFFF FFEF FFFF PP FEPF FEFF FEFF PEE
0030 FFFF FEFF FFFF FFFF FFFF FEEF FEFF FERF
QOA) FFFF FEFF FFFF FEEF ERFF FEEF EEFF FEEF
0080 FFFF FEFF FRFF FPFF FRRF FPEF FEEF FERE
ECTOMDa, ‘Ao inport Hex
V) Enabled [HexOny___v) + Vite Devee.
000 FF FF FF FY FY FF FY FF FF FY FF FF FF FF FY FF Read Device +
010 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FT Ewort Hex Fle
020 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF EF e
030 FF FF FF FF FF FF FY FF FF FF FF FF P FF PF RF PICkit™ 3

Successful
erase of the
PIC

Note all FFFF

blank data!

If you load the HEX file, then trigger an erase, it will blank the data in memory you just loaded so
ERASE before importing HEX files and keep in mind you should double check the Program

Memory window.

Renard Plus
www.renard-plus.com

Page 10 of 19

*Other brands and names may be claimed by others

PIC Programming Guide

€\ Lighting
9 Control

6. Next we need to load the precompiled HEX file (this step is always AFTER erasing). You
should have already downloaded from the http://renard-plus.com site on the product page
for your board or from the appropriate repository for your particular board. For this
example, we have accessed the TR16 product page and picked the 57600 baud rate package
and downloaded. After opening the ZIP package, we extracted the 00 address file (to
remain compatible with other Renards on the chain) so the example file name is RPTR16-
00-57600.hex (you need to pick the appropriate file for your situation and keep it where
you remember where to access it.)

ice Family Progammer Tools View Help

few Hel PICIBF Configuration
| importHex Ctiel | Devee: PICIEF2525 0800 000C 0100 0081
ExportHex Ctie€ 070 FIF 8300 0085 UseriDs: FF FF FF FF FF FFFFFF S
Bit ceq FEFE o7 ENc7. dou7 e

Checksum: 4342

- File that
F ile then PICkit 3 connected. ID = DEFAULT_PK3 S i e @ Micro .
ikl (oaiat A s loaded
Import fo -

o) (o) (v) (o) (oo] 1
Hex r— Successful ichmir

7] Enabled [HexOnly _v| Source: [CL.rd PLUSITRIGRPTRTE-00-pam-57600 hex
w0 rm mm mw o mm mm mw mw - import of
[e S i 0020 €02A SOD6 6E31 3E30 B22A EFIC FOOO OEOO
BN i i e i mr G e oy 0030 303 0301 3EGA 0902 3EOB 0304 3EOC 0908
0050 FFFF FEFF FEEF FFFF EEFF PP FPEF EEET

VDD PIGt 3

0000 0000 EFO7 FOOL 0000 929 2A73 B4De 9029 4

0050 1628 OE00 3EID 0901 JEIE 0902 3EIF 0904

o T Mmoo om Mmoo oo0 2 ose 1 osio amam os0 mm osio | |
Qi o ne o nnomm onm ope omm o mm o0 smc oseo 1ec oeco e oo sms osez | |
Sl rrr rrr rrr e mr mr mr m 0080 3E16 0304 3E17 0306 3L27 090 328 0920 !
0 rTF FTET FTE RT PP TR RRTFREY 0030 1620 EC2 3kl 0s01 325 0304 RG]
00M0 FTFT FEFT FTFT FEFT FTET FIET FERT FEET 00RO 3E21 0910 322 0920 3E23 0940 3E24 0980
B0 rrer rerr rrer rere reer rere reee rere o 00B0 162e oEre oEOF 0301 E10 0302 3enn o304 | V all d d ata

EEPROMDaa P EEPROM Data —r—| |

7| Ensbled [HexOny __ ~) +Wirte Device 9] Enabied « Wite Device

000 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ~ | Read Device + 000 1A 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF & Read Device +

010 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF PF Ewot Hax e 010 FF FF FF FF FF FF FF FF FF EF FF FF FF FE FF FF | Ewort Hex Fle

020 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF PP a~ 020 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF IF e [

wrmmrrarrarrarrrr - | PICKET3 oorrrrrrrrrrrrrrrrrrer - |PICKET3

7. Now we program by clicking the “Write” button. You will see status messages roll by in
the status window and if the programming completes you will see:

File DeviceFamily Programmer Tools View Help
PICI8F Configuration

Device: PIC18F2525 0800 000C 0100 0081
C007 E007 4007

UserIDs: FF FF FF FF FF FF FF FF

\ MiICROCHIP
VDD PICkt 3
E . m

Program Memory
) Enabled [HexOny v| Source: [C1L_rd PLUSTRIGRPTRI6-00-pwm-57600 hex

0000 0000 EFO7 FOO1L 0000 929E 2A73 B4De 9029 4
0010 R684 6A2A B84 BO2A EF13 F000 9229 822A
0020 202A SOD6 6E31 3E0 B22A EFIC FOOO OEQO
0030 3£09 0901 3EOA 0902 3EOB 0904 3EOC 0908
0040 3EOD 0910 3EOE 0920 3E13 0940 3E12 0980
0050 1628 OEO0 3EID 0901 3EIE 0902 3EIF 0904
0060 3£20 0908 3E19 0910 SEIA 0920 3EIB 0940

0070 3EIC 0980 162C OECO 3E14 0901 3E1S 0902
0080 3£16 0904 SE17 090 3E27 0910 328 0920
0090 1620 O0E02 3Ele 0901 3E25 0904 3E26 0908
OOAO 3E21 0910 322 0920 3E23 0940 3E24 0980
00B0 162E OEFe 3EOF 0901 3E10 0902 3E11l 0904 ~

Ao Import Hex
Y Eraiod (FnO) < tite Deves
000 1A 00 FF FF FF FF FF FF FF FF FF FF FF FF FF £F +| | ReadDevce
010 FF FF FF FF FF FF FF FF FF FF FF FF FE FE FF IF Ewot Hex Fle
020 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF =

8. Not absolutely required but just a darn good idea and highly recommended is doing a Verify
after the write. This will read back the part memory and compare against what should have
been programmed. It is rare to have a verify fail, but it does happen!

Renard Plus Page 11 of 19 PIC Programming Guide
www.renard-plus.com

*Other brands and names may be claimed by others

Ele DeviceFamily Progammer Tools View Help
PICISF Configuraton
Devce: PICIF2525

Verify button e

0800 000C 0100 0081
Co07 EO07 4007

riying Dovic: \ MicROCHIP
m Memory.

VDD PICke 3

On 50 °
e | Verdy J Erase. Blank Check /MCLR

] Source: (1. rd PLUSTRIGRPTR1E-00-pam-57600 hex

929 2a7
3 E

Ado Import Hex
« Wiite Device

000 12 00 FF FF FF
010 FF FF
020 FF FF FF FF FF
030 FF FF FF FF FF

FF FF FF FF FF FF FF FF FF FF EF 4
FF FF FF FF FF FF FF FF FF FF FF EF
FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF

Read Device +
Expott Hex Fie

PICkit™ 3

FF FF FF FF -

B

Fle DeviceFamily Progummer Toos View Hep
PICIEF Corfiguration
Devee: PICIBF2525 0600 000C 0100 0081
UserlDs: FF FF FFFF FFFFFF FF oo E007 407

Checksum: 9283

@) Lighting
¥ Control

= Success

FF FF FF FF FI

Once it verifies, your firmware is on the chip and you can disconnect the programmer (or remove it

from the ZIF socket and install back in the board) and fire up the board to test.

Common Problems:

- Verifies but does not work in good board: You might have forgotten to reload the HEX file
after erasing. The program tends to clear out its buffer on an erase so you must reload after
every erase. This is an easy one to get messed up on- it happens to the author all the time.
A hint is to look for data in the Program Memory window on the PICKit software before
programming. If you see all FFFF, then you probably do not have a HEX file loaded.

- Fails to verify: If you forget to erase a part that was previously programmed and then
program with new data, you can get a program succeeded, but fails to verify. You simply
need to start over and follow the programming process remembering to erase first, then load.

- Fails to program: This may be a bad chip or an issue with the programming socket (i.e. the
PIC socket on a Renard Plus board). Things to try- check the board for unsoldered pins on
the PIC or ICSP header. Check the PIC for bent pins. Make sure the PICKit software is
correctly identifying the part. Re-try the programming process making sure to erase. A
Blank Check might also be a good idea after an erase in this case to be sure things are really
erasing. Try another part- if things work, then you have a bad part.

2.3.2.2.

PICKit 2 Programming Example

When you purchased you programmer, you should have received either a disk with the software, or
a link to download the PICKit2 software.

You can also get a copy directly from MicroChip here:
http://ww1.microchip.com/downloads/en/DeviceDoc/PICkit%202%20v2.61.00%20Setup%20A.zip

Check on this page for updated information, other tools, etc.
http://www.microchip.com/stellent/idcplg?IdcService=SS GET PAGE&nodeld=1406&dDocNam

e=en(023805

Renard Plus
www.renard-plus.com

Page 12 of 19

*Other brands and names may be claimed by others

PIC Programming Guide

Here is a funny thing- the PICKit 2 Programming is exactly the same as the PICKit 3 (as above)
just it will say PICKit 2 wherever it says PICKit 3 as we show in the screen shots or directions
above. Just follow those exact same steps- Microchip intentionally duplicated the PICKit 2
experience on the PICKit 3 so this is by design.

2.3.3. Proprietary
Proprietary (i.e. NOT PICkit compatible) programmers can be used also as long as
the support the PIC parts we need to program. Unfortunately we cannot give you
screen shots or examples. Take a look at the process for the PICKits and it should be
VERY similar process:

- Install programming software,
- Attach to device to be programmed (it may be a ZIF only solution)\

o Ifitis in circuit via the ICSP, you will need to check to see if the programmer
powers the chip or if you need to apply external power (like the board power
system).

- Recognize the right part or manually configure it (some progammers may not be able to
detect the chip type and need to be told manually what part you want to program.

- ERASE

- Load or Import HEX file. Note: it is possible that some programmers do NOT accept HEX
file as a file format. It may need a BIN file. There are utilities that may be included with
your programmer software to convert a HEX file to binary (HEX2BIN is a very commonly
available utility- just Google it).

- Program / Write

- Verity

- BLINK LIGHTS!!

2.4. ZIF Sockets
ZIF stands for Zero Insertion Force. A ZIF socket allows easier installation and
removal for applications such as programmers where you are programming loose
parts. This is needed for some of the Renard board designs like the SS16 or
Headblinker boards that do not support on-board programming through an ICSP
connector. Some programmers come with a ZIF capability built in. However, many of the common
PICKit or compatible designs do not natively support handling programming the PIC out of the
board. For those cases you might want to consider getting a ZIF socket that works with your
programmer. When you purchase your programmer, often there are “bundled” options like this
PICKit 3 and ZIF kit:

Renard Plus Page 13 of 19 PIC Programming Guide
www.renard-plus.com

*Other brands and names may be claimed by others

If you already have your PICKit programmer or equivalent and want to add off-board programming
capability you can find many offerings like:

8-20 PIN or 28-40 PIN Selection

= *E_:’lijg. PIN P L@ iCPO1 & iCPO2 Programmer Connection

(this ZIF is easy to configure and use with just about ANY size thru-hole PIC, and any PICKit that
supports ICSP capability. This is the ZIF the author uses for situations where there is no ICSP
connector available. It is easy to use and very flexible.)

2.5. MPLab
MPLab is the IDE (Integrated Development Environment) from Microchip that allows the Renard
control software to be compiled into firmware that is programmed into the PIC. We assume that
you have successfully downloaded and installed the MPLAB code from the Microchip website and
that the software is at version v8.86 or newer. To use MPLabs to program the PIC directly, you
need to have a PICKit or compatible programmer (as described before), or one of the other
programmers that MPLabs supports (check with Microchip for details). MPLabs is most useful for
compiling and programming from source, rather than to program a pre-compiled HEX. Using
MPLabs to program a HEX file can be done but is much more cumbersome than using the PICKit
Debug/Programming software. However, the setup required for HEX programming is also needed
to do a compile/program so the steps are useful (at least for the configuration steps).

2.5.1. Installing MPLabs
Our recommendations is to use the older MPLab (8.6.xx) from the archives at Microchip archives
because in our experience it is easier to use, supports more devices, and is less picky about the
programming style than the newer version. Most of the Renard code has been developed using
version 8 or older of MPLabs and they may not translate well to the newer MPLab X version
without some code changes.

Additionally, in order to avoid path issues with files, we highly recommend installing MPLabs on
the default locations on Drive C. In theory, it is possible to adapt to other locations, but MPLabs
hardcodes drive letters.

Renard Plus Page 14 of 19 PIC Programming Guide
www.renard-plus.com

*Other brands and names may be claimed by others

2.5.2. HEX handling with MPLabs

First start of by opening MPLAB

& MPLAB IDE v8.86
File Edit View Project Debugger P ools Configure Window Help

|D@dE|sma|=sn Checksum: 0x835a

M Untitled Workspace =1

M Output

FICIEF4520 W0 novzdec bark 0

Initial MPLAB IDE screen

If you do not see the output screen it can be opened using the View Menu and the second option

will be Output.

Renard Plus Page 15 of 19
www.renard-plus.com

*Other brands and names may be claimed by others

PIC Programming Guide

= O Lighting

Control

Step 1 Configure Device

Select Device

Device:

Device Family:

S

| AL

Frogrammers

Microchip Toal Suppart

@ PICSTART Plus @ MPLAB REALICE {@ FICkit1
@ PROMATE Il @ MPLABICD 2 @ PICkit2
@ MPLAB PM3 @ MPLABICD 3 @ PICKit3
Language and Design Tools
@ ASSEMBLER @ COMPILER @ vDI
¥3.90 ¥2.40
Debuggers
@ MPLAB SIM @ MPLABICD 2 @ PICKit2
@ MPLABREALICE (@ MPLABICD 3 @ PICKit3
MFLAB ICE 2000 MFLAB ICE 4000 ICEACD Headers
@PCMEXND D PMF18¥WHO @No Header
@PCM1 EXN1
[[0]24 I [Cancel] [Help

@) Lighting
¥ Control

Select Device Screen

Use the device drop-down box to select the PIC chip you will be programming. All of the other
boxes and controls can be left to default.

Step 2 Configure Programmer

1 PICSTART Plus
ZMPLAE ICD 2

3 Licensed Debugger
4 Starker Kit on Board

& PICkE 3
7MPLAEICD 3

& AMNES1 Quick Programmer Beta

QPICkE 2

10 MPLAE PM 3
11 REAL ICE

12 PRO MATE II

Programmer Menu

From this menu select the programmer you will be using. Once selected the little check mark will
be positioned on the programmer you selected.

Renard Plus

www.renard-plus.com

Page 16 of 19

*Other brands and names may be claimed by others

PIC Programming Guide

% Lighting
9 Control

Step 3 Importing Pre-compiled HEX file

On the file menu you will see a menu item titled Import:

Mew Chrl+i

Open... ctrl+o

Open Warkspace...
Save Workspace
Save Workspace As...

Export...

Recent Files 3
Recent Workspaces 3

Exit

Select this option and the IDE will open a standard Windows Open window that will allow you to
traverse to the folder on your computer where your HEX files are located:

Open E‘El

Look in: | (3 MPASM Suilte ¥ 0@

5 [C)Example

§ E} Dr
MyRecent () Template
Documents

Desktop

@

My Documents

©

My Computer

File name; [v [Coeen)

U{\'

My Network Files of type | Al Load Files [* hex" cot* cod" e v [caneel |

Once you have located and selected your hex file the MPLAB software will display in the output
window that the file has successfully been loaded.

CE&

Build ‘Versinn Cantral | Find in Files

Loaded F4Christrmas LightsiRenard PWhdistan_adde-1-pwrn-57600.HEX

Step 4 Erase (if your part has been programmed before), Program and Verify PIC Chip

At this point, you part is programmed and ready to use. If you have an ICSP enabled board, you
should now be able to power up and start using your board. For other solutions, you need to install
the part in the appropriate spot of the board and proceed with any other programming and/or
assembly you need to do.

Renard Plus Page 17 of 19 PIC Programming Guide
www.renard-plus.com

*Other brands and names may be claimed by others

2.5.3. Source handling with MPLabs
The real use for MPLabs is to be able to make modifications to the source code (like the options we
discussed previously in the section “Firmware Options”) and compile then program the resulting
HEX. One of the most common reasons for re-compiling a project is to change the start address or
baud rate, and rarely for a bug fix. This section will walk you through the basic steps of
modifying, compiling, and re-programming a PIC chip.

2.5.3.1. Rebuilding and re-compiling Renard-Plus Projects
Setting up MPLabs and creating projects is a reasonably complicated process. The best advise we
can give you is to spend some time on the MicroChip website exploring the tutorials there to learn
about how MPLabs works and its use in general. We will try to provide some common “recipes”
for “cooking” your own firmware but a knowledge of MPLabs will be required and is beyond our
capability to provide in this document. We promise to try to improve this as we go, but again,
because of the complexity, the MPLabs knowledge is best obtained from the provider- MicroChip.

TBD: This section applies to RP source and is a work in progress and will cover these topics and
hopefully more:

- Detail source installation and access via IDE.

- Describe ASM variables.

- Show common settings.

- Screenshots of successful steps.

- Troubleshooting for issues.

Renard Plus Page 18 of 19 PIC Programming Guide
www.renard-plus.com

*Other brands and names may be claimed by others

3. Notes

This area provided for you to keep notes on the programming process as you see fit.

Renard Plus Page 19 of 19 PIC Programming Guide
www.renard-plus.com

*Other brands and names may be claimed by others

